STAT 3021 Lab 4

Ganghua Wang

February 8, 2020

Outline

- Newton-Leibniz formula, product rule, chain rule
- Derivative of common functions
- Densities of common continuous distributions
- Integral by substitution
- Integral by parts

Theorem 1 (Newton-Leibniz formula) Let F(n) be one of the primitive function of f(x), then

$$\int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a)$$

Theorem 2 (Product rule) Let h(x) = f(x)g(x), where $f, g \in C^0$, then h'(x) = f'(x)g(x) + f(x)g'(x).

Corollary 1 (Integral by parts) $\int f dg = fg - \int g df$ holds when either side is finite.

Theorem 3 (Chain rule) Let h(x) = f(g(x)), where $f, g \in C^0$, then h'(x) = f'(g(x))g'(x).

Corollary 2 (Integral by substitution) $\int_{[a,b]} f(g(x))g'(x)dx = \int_{[g(a),g(b)]} f(t)dt$ (Strictly speaking, we need some conditions, though you may never need to verify them in practice.)

Family	primitive	derivative
Power	x^a	ax^{a-1}
Log	ln(x)	$\frac{1}{x}$
Exponential	e^x	e^x
Trigonometric	$\sin(x)$	$\cos(x)$
	$\cos(x)$	$-\sin(x)$

Distribution	density
Uniform $U(a, b)$	$1_{[a,b]}$
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
Exponential $\mathcal{E}(\lambda)$	$\frac{1}{\lambda}e^{-\lambda x}$

Table 1: Derivative of common functions

Table 2: Densities of common continuous distributions

Example 1 (Mean of standard Normal) Calculate $\int_0^\infty x e^{-\frac{x^2}{2}} dx$.

$$\int_0^\infty x e^{-\frac{x^2}{2}} dx = \int_0^\infty (-e^{-\frac{x^2}{2}})' dx = -e^{-\frac{x^2}{2}} \Big|_0^\infty = 0 + 1 = 1$$

Remark: $\int_{\mathbb{R}} x e^{-\frac{x^2}{2}} dx = 0$ for it's an odd function.

Example 2 (Double integral) Calculate $\int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx$.

Let $S = \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx$, then

$$\begin{split} S^2 &= \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx \int_{\mathbb{R}} e^{-\frac{y^2}{2}} dy = \int_{\mathbb{R}^2} e^{-\frac{x^2+y^2}{2}} dx dy \quad \text{(Fubini Theorem)} \\ &= \int_0^\infty \int_0^{2\pi} r e^{-\frac{r^2}{2}} d\theta dr \quad \text{(Integral by substitution)} \\ &= 2\pi \int_0^\infty r e^{-\frac{r^2}{2}} dr = 2\pi \quad \text{(Example 1)} \end{split}$$

So $S = \sqrt{2\pi}$.

Example 3 (Variance of standard Normal) Calculate $\int_{\mathbb{R}} x^2 e^{-\frac{x^2}{2}} dx$.

$$\int_{\mathbb{R}} x^2 e^{-\frac{x^2}{2}} dx = \int_{\mathbb{R}} -x d(e^{-\frac{x^2}{2}})$$
$$= -x e^{-\frac{x^2}{2}} |_{-\infty}^{\infty} + \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx \quad \text{(Integral by parts)}$$
$$= \sqrt{2\pi} \quad \text{(Example 1)}$$

Remark: So if we normalize the integral of $\int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx$ by multiplying a coefficient $1/\sqrt{2\pi}$, it becomes a density function, which is exactly the density for standard normal. Besides, the result of Example 1 and 3 told us it has mean 0 and variance 1.