*9.50 Let Y_1, Y_2, \ldots, Y_n denote a random sample from the uniform distribution over the interval (θ_1, θ_2) . Show that $Y_{(1)} = \min(Y_1, Y_2, \ldots, Y_n)$ and $Y_{(n)} = \max(Y_1, Y_2, \ldots, Y_n)$ are jointly sufficient for θ_1 and θ_2 .

٠

9.50
$$P(Y_{1}, ..., Y_{n} | \theta_{1}, \theta_{2}) = \left(\frac{1}{\theta_{2} - \theta_{1}}\right)^{n} 1_{S} \theta_{1} \leq Y_{1}, ..., Y_{n} \leq \theta_{2}$$

 $= \left(\frac{1}{\theta_{2} - \theta_{1}}\right)^{n} 1_{S} \theta_{1} \leq Y_{1}, \frac{1}{S} 1_{S} Y_{1}, \frac{1}{S} \in \Theta_{2}$
So $Y_{1}, Y_{1}, Y_{1}, \alpha_{1} \in SS$.

1

Let $\{X_n\}_n$ and $\{Y_n\}_n$ be two sequences of random variables. Suppose $X_n \to_p x$ and $Y_n \to_p y$, as $n \to \infty$, where $x, y \in \mathbb{R}$ are constants. In the class, I proved $X_n + Y_n \to_p x + y$. Please give a proof of the result: $X_n Y_n \to_p xy$. You should prove it from the definition of convergence in probability (i.e. you can't use theorem 9.2)

(Hint:
$$|X_nY_n - xy| = |X_nY_n - xY_n + xY_n - xy| \le |X_nY_n - xY_n| + |xY_n - xy|$$
)

1. Solution 1:
For
$$X_n \xrightarrow{P} X$$
, $Y_n \xrightarrow{P} y$, so for any $\sum 0$, $\exists N > 0$,
s.t. $\forall n > N$. we have $P(|X_n - x| > \varepsilon) \le \varepsilon$, $P(|Y_n - y| > \varepsilon) \le \varepsilon$.
 $x \xrightarrow{T} w$

So
$$\forall n \ge N$$
, $|\forall n \ge \forall n \ge 1 \\ = 1 \\ 1 \\ 1 \ge 1 \\ 1 \ge 1 \\ 1 \\ 1 \ge 1 = 1 \\ 1 \ge 1 \\ 1 \ge 1 \\ 1 \ge 1 \\ 1 \ge 1 = 1 \\ 1 \ge 1 = 1 \\ 1 \ge 1 =$

STAT 4102 Midterm 2

2020 Fall

1 (25 points)

Let $X_1, ..., X_n$ be i.i.d. random variables with pdf

$$f(x) = \theta x^{\theta - 1}, x \in (0, 1), \theta \in (0, \infty).$$

- 1. What is the likelihood function? (4 points)
- 2. Find a one-dimensional sufficient statistic for θ . Note that the vector (X_1, \dots, X_n) is sufficient by definition, but it is *n*-dimensional. (7 points)
- 3. Find the method of moment estimator for θ . (7 points)
- 4. It is consistent? Prove your result. (7 points)

Solution: 1. $L(\theta|x_1, ..., x_n) = \theta^n (\prod_i x_i)^{\theta-1}$. 2. By the factorization theorem, $\prod_i X_i$ is a sufficient statistic. 3. $EX_1 = \frac{\theta}{\theta+1}$, and thus a method of moments estimator is \overline{X}

$$\hat{\theta} = \frac{X}{1 - \bar{X}}.$$

4. It is consistent. By the law of large number, $\bar{X} \to_p EX_1$. Then by theorem 9.2, we get $\frac{\bar{X}}{1-\bar{X}} \to_p \theta$, since $f(x) = \frac{x}{1-x}$ is continuous on (0,1). $p = \frac{\bar{X}}{1-\bar{X}} \stackrel{P}{\longrightarrow} \underbrace{\frac{\mathbb{E}X_1}{1-\bar{X}}}_{1-\bar{X}} \stackrel{P}{\longrightarrow} \underbrace{\frac{\mathbb{E}X_1}{1-\bar{X}}}_{1-\bar{X}} \stackrel{P}{\longrightarrow} \underbrace{\mathbb{E}X_1}_{1-\bar{X}} \stackrel{P}{\longrightarrow} \underbrace{\mathbb$

2 (25 points)

Let $X_1, ..., X_n$ be i.i.d. random variables with pdf

$$f(x) = \frac{2x}{\theta^2}, x \in (0, \theta], \theta \in (0, \infty).$$

1

- 1. What is the likelihood function? (4 points)
- 2. Find the MLE for θ . (10 points)
- 3. Is it consistent? Prove your result. (6 points)
- 4. Find the MLE for $\exp(\theta^2)$. Is it consistent? (5 points)

 $= 0 \frac{\chi^{0+1}}{\Omega + 1} = 0$

MLE for e^{0} is e^{0}

L(O|X1,...,Xn)= = IXi. If oc Xir Xn < 0}

 $=\frac{2}{\beta^2}\prod_{X_i} \cdot 1_S$

Solution:

1. $L(\theta|x_1, ..., x_n) = \frac{2^n}{\theta^{2n}} \prod_i x_i 1_{x_i \le \theta} 1_{x_i > 0} = \frac{2^n}{\theta^{2n}} \lim_{x_i \ge 0} 1_{\max x_i \le \theta} 1_{x_i x_i} = \frac{2^n}{\theta^{2n}} \lim_{x_i \ge 0} 1_{\max x_i \le \theta} 1_{x_i x_i} = \frac{2^n}{\theta^{2n}} \int_{x_i \ge 0} 1_{\max x_i \le \theta} 1_{x_i x_i} = \frac{2^n}{\theta^{2n}} \int_{x_i \ge 0} 1_{\max x_i \le \theta} 1_{x_i x_i} = \frac{2^n}{\theta^{2n}} \int_{x_i \ge 0} 1_{\max x_i \le \theta} 1_{x_i x_i} = \frac{2^n}{\theta^{2n}} \int_{x_i \ge 0} 1_{\max x_i \le \theta} 1_{x_i x_i} = \frac{2^n}{\theta^{2n}} \int_{x_i \ge 0} 1_{\max x_i \le \theta} 1_{x_i x_i} = \frac{2^n}{\theta^{2n}} \int_{x_i \ge 0} 1_{\max x_i \le \theta} 1_{x_i x_i} = \frac{2^n}{\theta^{2n}} \int_{x_i \ge 0} 1_{\max x_i \le \theta} 1_{x_i x_i} = \frac{2^n}{\theta^{2n}} \int_{x_i \ge 0} 1_{\max x_i \le \theta} 1_{x_i x_i \ge 0} \int_{x_i \ge 0} 1_{x_i x_i \ge 0} \int_{x_i \ge 0} 1_{x_i x_i \ge 0} \int_{x_i \ge 0} 1_{x_i \ge 0} \int_{x_i \ge 0} 1_{x_i$ positive constant, the second factor is a decreasing function on $[\max x_i, \infty)$, and it is 0 when $\theta < \max x_i$, we know the likelihood function is maximized at $\max x_i$. Thus $\theta = \max X_i$ $\frac{\chi_{(m)} - \theta(z \in) \rightarrow 0}{(\theta - \chi_{(m)} > \epsilon)}$ 3. Let $\epsilon > 0$. Because max $X_i \leq \theta$, we have

$$P(|\max X_i - \theta| > \epsilon) = P(\max X_i < \theta - \epsilon)$$

Now, let F(x) be the c.d.f. of X_1 . We know that F(x) < 1, for any x < 1

$$P(\max X_i < \theta - \epsilon) = P(X_1, X_2, ..., X_n < \theta - \epsilon) = P(X_1 \le \theta - \epsilon)^n = F(\theta - \epsilon)^n,$$

t
$$= \rho\left(\chi(n) < \theta - \epsilon\right)$$

 ϵ).

we ge

$$P(|\max X_i - \theta| > \epsilon) \to 0, \text{ as } n \to \infty.$$

4. By the invariance property of MLE, the MLE of $\exp(\theta^2)$ is $\exp\{(\max X_i)^2\}$. We've shown that $\max X_i \to_p \theta$. By theorem 9.2, the MLE is again consistent.

3 (25 points)

Let $X_1, ..., X_n$ be i.i.d. Gamma (α, β) distributed and $\alpha > 0$ is known. The p.d.f. is

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp(-x/\beta), x > 0.$$

- 1. Find the MLE of β . (5 points)
- 2. Suppose we want to test $H_0: \beta = \beta_0$ against $H_1: \beta \neq \beta_0$, for some known and fixed $\beta_0 > 0$. Develop a level α test for it, using the MLE as the test statistic. (15 points)
- 3. What is the power of your test at the point $\beta_1 \neq \beta_0$? (5 points)

You may use the fact that $\sum_{i=1}^{n} X_i \sim \text{Gamma}(n\alpha, \beta)$.

Solution:

1. The log-likelihood function is

$$l(\beta|x_1, ..., x_n) = -n\log(\Gamma(\alpha)) - n\alpha\log(\beta) + (\alpha - 1)(\sum_i \log(x_i)) - \frac{1}{\beta}\sum_i x_i.$$

Taking a derivative w.r.t. β , we have

$$-n\alpha\frac{1}{\beta} + \frac{1}{\beta^2}\sum_i x_i.$$

By setting it to 0, we get $\frac{\sum X_i}{n\alpha}$. Because the second derivative

$$n\alpha \frac{1}{\beta^2} - \frac{2}{\beta^3} \sum_i x_i$$

$$H_0 = \beta = \beta_0$$
 v.s. $H_i = \beta \neq \beta_i$

XI ..., Xn Hd Gamma (2, B)

is negative at this point, we know that the MLE is

$$=\frac{\sum X_i}{n\alpha}$$
 $N \alpha \beta = \sum X_i + Camma (Ndr \beta)$

2. Let $\gamma_{1-\omega/2}$ and $\gamma_{\omega/2}$ be two quantiles of the Gamma $(n\alpha, \beta_0)$ distribution. Then we have N-level

Â

$$P_{H_0}(\gamma_{1-\omega/2}/(n\alpha) \le \hat{\beta} \le \gamma_{\omega/2}/(n\alpha)) = \omega.$$

Thus we can reject the null when $\hat{\beta} \leq \gamma_{1-\omega/2}/(n\alpha)$ or $\hat{\beta} \geq \gamma_{\omega/2}/(n\alpha)$, and this is a level ω test.

3. The

power is

$$\begin{array}{c}
P(\operatorname{Gamma}(n\alpha,\beta_1) \geq \gamma_{\omega/2}) + P(\operatorname{Gamma}(n\alpha,\beta_1) \leq \gamma_{1-\omega/2}).\\
P(\operatorname{Gamma}(n\alpha,\beta_1) \leq \gamma_{\omega/2}) + P(\operatorname{Gamma}(n\alpha,\beta_1) \leq \gamma_{1-\omega/2}).\\
P(\operatorname{Gamma}(n\alpha,\beta_1) \geq \gamma_{\omega/2}) + P(\operatorname{Gamma}(n\alpha,\beta_1) \leq \gamma_{\omega/2}).\\
P(\operatorname{Gamma}(n\alpha,\beta_1) \geq \gamma_{\omega/2}) + P(\operatorname{Gamma}(n\alpha,\beta_1) \leq \gamma_{\omega/2}).$$
P(\operatorname{Gamma}(n\alpha,\beta_1) \geq \gamma_{\omega/2}) + P(\operatorname{Gamma}(n\alpha,\beta_1) \leq \gamma_{\omega/2}).
P(\operatorname{Gamma}(n\alpha,\beta_1) \geq \gamma_{\omega/2}) + P(\operatorname{Gamma}(n\alpha,\beta_1) \geq \gamma_{\omega/2}).
P(\operatorname{Gamma}(n\alpha,\beta_

4 (25 points)

A coin operated soda machine was designed to discharge an average of 7 ounces of soda per cup. In a test of the machine, 30 cups of beverage were drawn from the machine and measured. The mean and standard deviation of the measurements were 7.1 ounces and 0.12 ounce, respectively.

- 1. Do these data present sufficient evidence to indicate that the mean discharge differs from 7 ounces? Use $\alpha = 0.10$. If you use a formula for this problem, please verify every condition needed for it. (20 points)
- 2. What is the p-value? Write your answer in terms of the c.d.f of normal distribution. You do not need to calculate the number. (5 points)

(Some quantiles you may need: $z_{0.25} = 1.96$, $z_{0.05} = 1.64$, $z_{0.1} = 1.28$) Solution:

1. Let \bar{X} be the sample mean, and S^2 be the sample variance. We use the statistic

$$Z \neq \frac{\bar{X} - 7}{\sqrt{S}/\sqrt{n}}$$

for testing $H_0: \mu = 7$ vs $H_1: \mu \neq 7$. If we assume that the volume of beverage in the 30 cups $X_1, ..., X_n$ are i.i.d., with mean μ and variance σ^2 , then under the null hypothesis, by the central limit theorem,

$$\bar{X} - \mu \sim_{approx} N(0, \sigma^2/n).$$

Since S^2 is a consistent estimator for σ^2 , we have that under the null hypothesis,

$$Z = \frac{\bar{X} - 7}{\sqrt{S}/\sqrt{n}} \sim_{approx} N(0, 1).$$

Let z_{α} denote the corresponding quantile of the standard normal distribution. Then we know a test that rejects the null when $|Z| \geq z_{\alpha/2}$ is a level α test. Using the data provided, we have Z = 4.564 and $z_{0.05} = 1.64$. Thus we reject the null hypothesis.

2. Let ϕ be the c.d.f. of the standard normal distribution. The p-value is $2\phi(-|Z|)$.

$$\psi(X) = P(Z \leq X), Z \sim N(0,1)$$