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9:23 Refer to Exercise 9.21. Suppose that Yy, Y, ..., Y, is a random sample of size n from a
population for which the first four moments are finite. That is, m} = E(Y;) < oo, mj) =
E(Y?) < 00, my = E(Y}) < o0, and m), = E(Y}) < 0o. (Note: This assumption is valid for

the normal and Poisson distributions in Exercises 9.21 and 9.22, respectively.) Again, assume



that n = 2k for some integer k. Consider
l k
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= Y,’ -Y i— .
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a Show that 62 is an unbiased estimator for 2.

b Show that 62 is a consistent estimator for o.
¢ Why did you need the assumption that m), = E(Y;') < 00?
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932 LetYy, Y,,..., Y, denote a random sample from the probability density function
2
_27 y Z 2’
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0, elsewhere.

Does the law of large numbers apply to Y in this case? Why or why not?
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945 Suppose that Yy, Y,,..., ¥, is a random sample from a probability density function in the
(one-parameter) exponential family so that

b —[c(ﬁ)d(y)], b,
f(yI0)={Z()(y)e a<y<

elsewhere,
where a and b do not depend on 6. Show that )", d(Y;) is sufficient for 6
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*951 LetYy, Ya,..., Y, denote a random sample from the probability density function
e‘()’*e), y Z 9,
fiylo) = {
0, elsewhere.

Show that Y;) = min(Y;, Y», ..., Y,) is sufficient for 6.
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94 letY,, Y,,..., Y, denote arandom sample of size n from a uniform distribution on the interval
0, 6).If Yyy =min(Y, Y>, ..., Y,), the result of Exercise 8.18 is that 0, = (n+1)Yq is an
unbiased estimator for 6. If Y, =max(Y;, Y»,..., Y,), the results of Example 9.1 imply that

0, = [(n 4+ 1)/n]Y,) is another unbiased estimator for 6. Show that the efficiency of 6, to b,
is 1/n2. Notice that this implies that 8, is a markedly superior estimator.

Yoy = o (o %), Yor B U((09))

—

wLos . [8=1]

- n-l 0

JﬁYU) [‘(/])b n “Py) ‘ I .—\Kj))
O \

LYoz o . =0T 9 /

N~ uU’)/))
Vir o= [yt opmdy - oyt

-*fi
T3)-T) z
Ty P o o

= \I/M’ \7/(n).

=N




Most efficient me?  MYUE ]
How o find ot 7 Roo- Blockweld |

956 Refer to Exercise 9.38(b). Find an MVUE of o2

9.38 LetY,,Y,,..., Y, denote a random sample from a normal distribution with mean y and

variance o 2.
a If u is unknown and o2 is known, show that Y is sufficient for u.
b If u is known and o2 is unknown, show that Z;’:l (Y; — w)? is sufficient for o2.
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