$$ \def\E{\mathbb{E}} %expectation \def\P{\mathbb{P}} %prob \def\var{\mathbb{V}} %var \def\T{\mathrm{\scriptscriptstyle T}} %transpose \def\ind{\mathbbm{1}} %indicator \newcommand{\gw}[1]{\color{red}{(#1)}} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\abs}[1]{\lvert#1\rvert} $$

Cited from John D. Cook

John von Neumann famously said

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

By this he meant that one should not be impressed when a complex model fits a data set well. With enough parameters, you can fit any data set. It turns out you can literally fit an elephant with four parameters if you allow the parameters to be complex numbers. See this paper for details: “Drawing an elephant with four complex parameters”1.

Piotr also sent me the following Python code he’d written to implement the method in the paper. This code produced the image above.

Click to expand code.
"""
Author: Piotr A. Zolnierczuk (zolnierczukp at ornl dot gov)

Based on a paper by:
Drawing an elephant with four complex parameters
Jurgen Mayer, Khaled Khairy, and Jonathon Howard,
Am. J. Phys. 78, 648 (2010), DOI:10.1119/1.3254017
"""
import numpy as np
import pylab

# elephant parameters
p1, p2, p3, p4 = (50 - 30j, 18 +  8j, 12 - 10j, -14 - 60j )
p5 = 40 + 20j # eyepiece

def fourier(t, C):
    f = np.zeros(t.shape)
    A, B = C.real, C.imag
    for k in range(len(C)):
        f = f + A[k]*np.cos(k*t) + B[k]*np.sin(k*t)
    return f

def elephant(t, p1, p2, p3, p4, p5):
    npar = 6
    Cx = np.zeros((npar,), dtype='complex')
    Cy = np.zeros((npar,), dtype='complex')

    Cx[1] = p1.real*1j
    Cx[2] = p2.real*1j
    Cx[3] = p3.real
    Cx[5] = p4.real
    
    Cy[1] = p4.imag + p1.imag*1j
    Cy[2] = p2.imag*1j
    Cy[3] = p3.imag*1j
    
    x = np.append(fourier(t,Cx), [-p5.imag])
    y = np.append(fourier(t,Cy), [p5.imag])
    
    return x,y

x, y = elephant(np.linspace(0,2*np.pi,1000), p1, p2, p3, p4, p5)
pylab.plot(y,-x,'.')
pylab.show()

Some comments:

  • Actually the code above used five complex numbers, four for the contour and one for the eyepiece, thus ten parameters to fit the whole elephant.
  • We need one additional parameter to make its trunk wiggle, along with some code modification. Animation, Download code
  • Fourier strikes again!